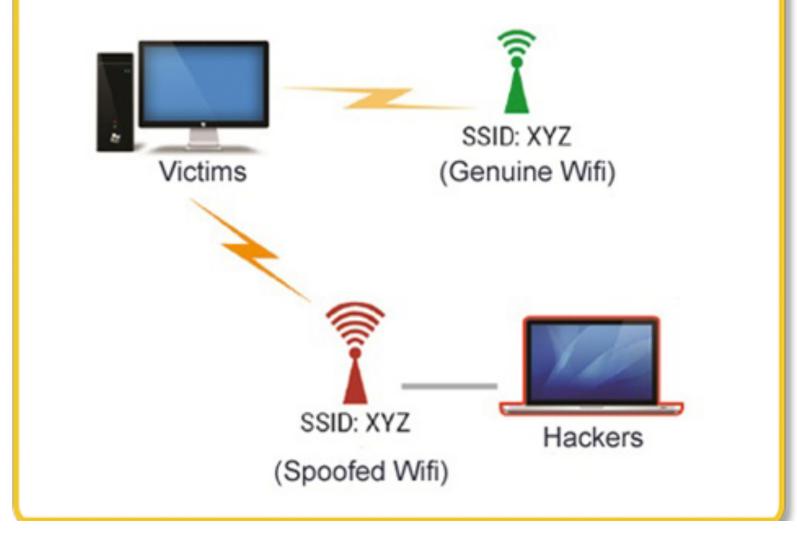

Module 3 Network Security

Submodule 4: Wireless Security

Wireless Technologies

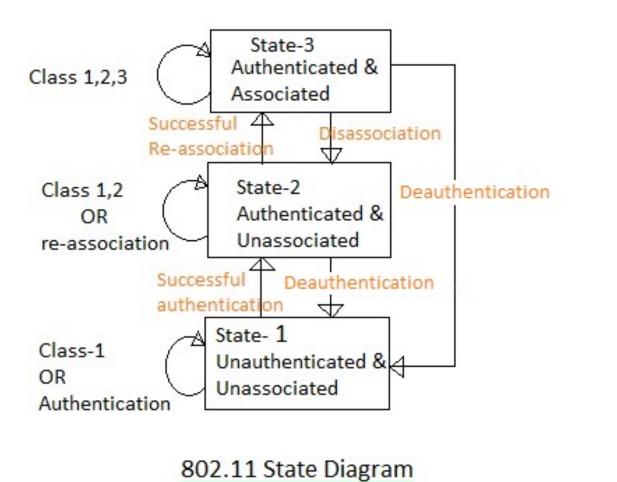
- In wireless networking, parties connecting to a network are referred to as clients.
- A wireless router or other network interface that a client connects to is Access Point (AP)
- Client establishes a wired network, which provides a gateway to the Internet

Wireless Security Concerns


- Radio signals may leak outside buildings
- Wireless network is susceptible to sniffing
- Wireless communication can easily be intercepted
- Unauthorized user can use someone else's wireless access point
- Authorization and authentication are more challenging in wireless networking

Wireless Protocols

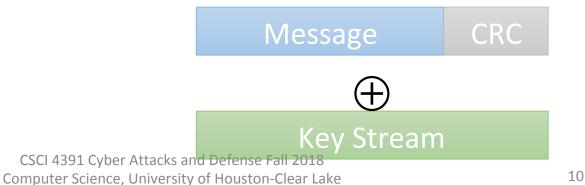
- Most wireless networks use protocols defined by the <u>IEEE 802.11</u> family of standards.
 - Methods for transmitting data via radio waves over predefined radio frequency ranges
 - 802.11 defines the structure of wireless frames that encapsulate the higher layers of the IP stack
 - Most TCP/IP implementations perform reframing of packets depending on their intended recipient.
 - Wireless traffic received in the form of 802.11 frames is converted into Ethernet frames that are passed to higher layers of the TCP/IP stack
 - Ethernet frames to be routed to wireless clients are converted into 802.11 frames


Service Set ID (SSID)

- Multiple wireless network can coexist
 - Each network is identified by a 32-character SSID
 - Typical default SSID of access point is manufacturer's name
 - SSIDs often broadcasted to enable discovery of the network by prospective clients
- SSIDs are not signed, thus enabling a simple spoofing attack
 - Place a rogue AP in a public location and use the SSID of an ISP
 - Set up a login page similar to the one of the ISP
 - Wait for clients to connect to rogue AP and authenticate

Wireless Networking Frames

- 802.11 standards defines:
 - Authentication frame: client use it or present its identity to an AP
 - Association request frame: client sends it to ask AP to allocate resources
 - Association response frame
 - Disassociation frame: sent by an AP to terminate a wireless connection
 - Deauthentication frame: an AP can send it to cut off communications altogether
 - Reassociation request frame
 - Reassociation response frame


WLAN Class 1, 2, 3 frames

Wired Equivalent Privacy (WEP)

- WEP protocol was incorporated into the original 802.11 standard to provide:
 - Confidentiality: eavesdropping is prevented
 - Data integrity: packets cannot be tampered with
 - Access control: only properly encrypted packets are routed
- Design constraints of WEP:
 - Inexpensive hardware implementation with 90's technology
 - Compliance with early U.S. export control regulations on encryption (40-bit keys)


WEP Protocol

- Setup
 - Access point and client share 40-bit key K
 - The key never changes during a WEP session
- Encryption
 - Compute CRC-32 checksum of message M (payload of frame)
 - Pick 24-bit initialization vector V
 - Using the RC4 stream cipher, generate key stream S(K,V)
 - Create ciphertext $C = (M | | crc(M)) \oplus S(K,V)$

WEP Protocol (cont.)

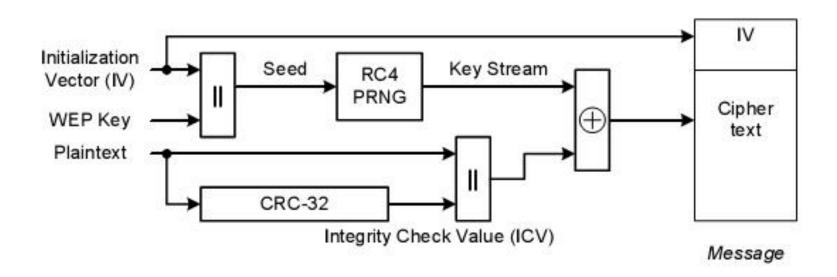

- Client authentication:
 - Open system: client doesn't need any credentials
 - Shared key authentication:
 - Access point sends unencrypted random challenge to client
 - Client responds with encrypted challenge
- Transmission
 - Send V|| C

Figure 6.24: Encryption with a stream cipher.

Authentication Spoofing

- Attacker wants to spoof a legitimate client
 - Does not know the secret key K
 - Can eavesdrop authentication messages
- Attack
 - Obtain challenge R and encrypted challenge C = (R | | crc(R)) ⊕ S(K,V)
 - Compute key stream $S(K,V) = (R | | crc(R)) \oplus C$
 - Reuse key stream S(K,V) when challenged from access point

Reused Initialization Vectors

- Repeated IV implies reused key stream
 - Attacker obtains XOR of two messages
 - Attacker can recover both message and key stream
 - Recovered key stream can be used by attacker to inject traffic
- Default IV
 - Several flawed implementations of IV generation
 - E.g., start at zero when device turned on and then repeatedly increment by one
- Random IV
 - Small length (24 bits) leads to repetition in a short amount of time even randomly generated
 - E.g., collision expected with high probability after 2¹² ≈ 4,000 transmissions

Wi-Fi Protected Access (WPA)

- WEP became widely known as insecure
 - In 2005, FBI publically cracked a WEP key in only 3 minutes!
- Wi-Fi Protected Access (WPA) proposed in 2003
- Improves on WEP in several ways:
 - Larger secret key (128 bits) and initialization data (48 bits)
 - Supports various types of authentication besides a shared secret, such as username/password
 - Dynamically changes keys as session continues
 - Cryptographic method to check integrity
 - Frame counter to prevent replay attacks

WPA2

- WPA was an intermediate stepping-stone
 - Final version: IEEE 802.11i, aka WPA2
- Improvements over WPA are incremental rather than changes in philosophy:
 - Uses AES instead of RC4
 - Handles encryption, key management, and integrity
 - MAC provided by Counter Mode with Cipher Block Chaining (CCMP) used in conjunction with AES
- WPA2 needs recent hardware to operate properly, but this will get better over time

Alternatives and Add-Ons

- WEP, WPA, and WPA2 all protect your traffic only up to the access point
 - No security provided beyond access point
- Other methods can encrypt end-to-end:
 - SSL, SSH, VPN, PGP, and so on
- End-to-end encryption is often simpler than setting up network-level encryption
- Most of these solutions require per-application configuration

• WPA2 Has Been Broken. What Now?

Acknowledgement

 Part of the content in this document is adopted from the recommended textbook:

Michael Goodrich, Roberto Tamassia, "Introduction to Computer Security", 1st Edition. Pearson. ISBN-13: 978-0321512949, ISBN-10: 9780321512949